You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

282 lines
8.8 KiB

/*
HardwareSerial.cpp - Hardware serial library for Wiring
Copyright (c) 2006 Nicholas Zambetti. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Modified 23 November 2006 by David A. Mellis
Modified 28 September 2010 by Mark Sproul
Modified 14 August 2012 by Alarus
Modified 3 December 2013 by Matthijs Kooijman
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include <util/atomic.h>
#include "Arduino.h"
#include "HardwareSerial.h"
#include "HardwareSerial_private.h"
// this next line disables the entire HardwareSerial.cpp,
// this is so I can support Attiny series and any other chip without a uart
#if defined(HAVE_HWSERIAL0) || defined(HAVE_HWSERIAL1) || defined(HAVE_HWSERIAL2) || defined(HAVE_HWSERIAL3)
// SerialEvent functions are weak, so when the user doesn't define them,
// the linker just sets their address to 0 (which is checked below).
// The Serialx_available is just a wrapper around Serialx.available(),
// but we can refer to it weakly so we don't pull in the entire
// HardwareSerial instance if the user doesn't also refer to it.
#if defined(HAVE_HWSERIAL0)
void serialEvent() __attribute__((weak));
bool Serial0_available() __attribute__((weak));
#endif
#if defined(HAVE_HWSERIAL1)
void serialEvent1() __attribute__((weak));
bool Serial1_available() __attribute__((weak));
#endif
#if defined(HAVE_HWSERIAL2)
void serialEvent2() __attribute__((weak));
bool Serial2_available() __attribute__((weak));
#endif
#if defined(HAVE_HWSERIAL3)
void serialEvent3() __attribute__((weak));
bool Serial3_available() __attribute__((weak));
#endif
void serialEventRun(void)
{
#if defined(HAVE_HWSERIAL0)
if (Serial0_available && serialEvent && Serial0_available()) serialEvent();
#endif
#if defined(HAVE_HWSERIAL1)
if (Serial1_available && serialEvent1 && Serial1_available()) serialEvent1();
#endif
#if defined(HAVE_HWSERIAL2)
if (Serial2_available && serialEvent2 && Serial2_available()) serialEvent2();
#endif
#if defined(HAVE_HWSERIAL3)
if (Serial3_available && serialEvent3 && Serial3_available()) serialEvent3();
#endif
}
// macro to guard critical sections when needed for large TX buffer sizes
#if (SERIAL_TX_BUFFER_SIZE>256)
#define TX_BUFFER_ATOMIC ATOMIC_BLOCK(ATOMIC_RESTORESTATE)
#else
#define TX_BUFFER_ATOMIC
#endif
// Actual interrupt handlers //////////////////////////////////////////////////////////////
void HardwareSerial::_tx_udr_empty_irq(void)
{
// If interrupts are enabled, there must be more data in the output
// buffer. Send the next byte
unsigned char c = _tx_buffer[_tx_buffer_tail];
_tx_buffer_tail = (_tx_buffer_tail + 1) % SERIAL_TX_BUFFER_SIZE;
*_udr = c;
// clear the TXC bit -- "can be cleared by writing a one to its bit
// location". This makes sure flush() won't return until the bytes
// actually got written. Other r/w bits are preserved, and zeroes
// written to the rest.
#ifdef MPCM0
*_ucsra = ((*_ucsra) & ((1 << U2X0) | (1 << MPCM0))) | (1 << TXC0);
#else
*_ucsra = ((*_ucsra) & ((1 << U2X0) | (1 << TXC0)));
#endif
if (_tx_buffer_head == _tx_buffer_tail) {
// Buffer empty, so disable interrupts
cbi(*_ucsrb, UDRIE0);
}
}
// Public Methods //////////////////////////////////////////////////////////////
void HardwareSerial::begin(unsigned long baud, byte config)
{
// Try u2x mode first
uint16_t baud_setting = (F_CPU / 4 / baud - 1) / 2;
*_ucsra = 1 << U2X0;
// hardcoded exception for 57600 for compatibility with the bootloader
// shipped with the Duemilanove and previous boards and the firmware
// on the 8U2 on the Uno and Mega 2560. Also, The baud_setting cannot
// be > 4095, so switch back to non-u2x mode if the baud rate is too
// low.
if (((F_CPU == 16000000UL) && (baud == 57600)) || (baud_setting >4095))
{
*_ucsra = 0;
baud_setting = (F_CPU / 8 / baud - 1) / 2;
}
// assign the baud_setting, a.k.a. ubrr (USART Baud Rate Register)
*_ubrrh = baud_setting >> 8;
*_ubrrl = baud_setting;
_written = false;
//set the data bits, parity, and stop bits
#if defined(__AVR_ATmega8__)
config |= 0x80; // select UCSRC register (shared with UBRRH)
#endif
*_ucsrc = config;
sbi(*_ucsrb, RXEN0);
sbi(*_ucsrb, TXEN0);
sbi(*_ucsrb, RXCIE0);
cbi(*_ucsrb, UDRIE0);
}
void HardwareSerial::end()
{
// wait for transmission of outgoing data
flush();
cbi(*_ucsrb, RXEN0);
cbi(*_ucsrb, TXEN0);
cbi(*_ucsrb, RXCIE0);
cbi(*_ucsrb, UDRIE0);
// clear any received data
_rx_buffer_head = _rx_buffer_tail;
}
int HardwareSerial::available(void)
{
return ((unsigned int)(SERIAL_RX_BUFFER_SIZE + _rx_buffer_head - _rx_buffer_tail)) % SERIAL_RX_BUFFER_SIZE;
}
int HardwareSerial::peek(void)
{
if (_rx_buffer_head == _rx_buffer_tail) {
return -1;
} else {
return _rx_buffer[_rx_buffer_tail];
}
}
int HardwareSerial::read(void)
{
// if the head isn't ahead of the tail, we don't have any characters
if (_rx_buffer_head == _rx_buffer_tail) {
return -1;
} else {
unsigned char c = _rx_buffer[_rx_buffer_tail];
_rx_buffer_tail = (rx_buffer_index_t)(_rx_buffer_tail + 1) % SERIAL_RX_BUFFER_SIZE;
return c;
}
}
int HardwareSerial::availableForWrite(void)
{
tx_buffer_index_t head;
tx_buffer_index_t tail;
TX_BUFFER_ATOMIC {
head = _tx_buffer_head;
tail = _tx_buffer_tail;
}
if (head >= tail) return SERIAL_TX_BUFFER_SIZE - 1 - head + tail;
return tail - head - 1;
}
void HardwareSerial::flush()
{
// If we have never written a byte, no need to flush. This special
// case is needed since there is no way to force the TXC (transmit
// complete) bit to 1 during initialization
if (!_written)
return;
while (bit_is_set(*_ucsrb, UDRIE0) || bit_is_clear(*_ucsra, TXC0)) {
if (bit_is_clear(SREG, SREG_I) && bit_is_set(*_ucsrb, UDRIE0))
// Interrupts are globally disabled, but the DR empty
// interrupt should be enabled, so poll the DR empty flag to
// prevent deadlock
if (bit_is_set(*_ucsra, UDRE0))
_tx_udr_empty_irq();
}
// If we get here, nothing is queued anymore (DRIE is disabled) and
// the hardware finished transmission (TXC is set).
}
size_t HardwareSerial::write(uint8_t c)
{
_written = true;
// If the buffer and the data register is empty, just write the byte
// to the data register and be done. This shortcut helps
// significantly improve the effective datarate at high (>
// 500kbit/s) bitrates, where interrupt overhead becomes a slowdown.
if (_tx_buffer_head == _tx_buffer_tail && bit_is_set(*_ucsra, UDRE0)) {
// If TXC is cleared before writing UDR and the previous byte
// completes before writing to UDR, TXC will be set but a byte
// is still being transmitted causing flush() to return too soon.
// So writing UDR must happen first.
// Writing UDR and clearing TC must be done atomically, otherwise
// interrupts might delay the TXC clear so the byte written to UDR
// is transmitted (setting TXC) before clearing TXC. Then TXC will
// be cleared when no bytes are left, causing flush() to hang
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
*_udr = c;
#ifdef MPCM0
*_ucsra = ((*_ucsra) & ((1 << U2X0) | (1 << MPCM0))) | (1 << TXC0);
#else
*_ucsra = ((*_ucsra) & ((1 << U2X0) | (1 << TXC0)));
#endif
}
return 1;
}
tx_buffer_index_t i = (_tx_buffer_head + 1) % SERIAL_TX_BUFFER_SIZE;
// If the output buffer is full, there's nothing for it other than to
// wait for the interrupt handler to empty it a bit
while (i == _tx_buffer_tail) {
if (bit_is_clear(SREG, SREG_I)) {
// Interrupts are disabled, so we'll have to poll the data
// register empty flag ourselves. If it is set, pretend an
// interrupt has happened and call the handler to free up
// space for us.
if(bit_is_set(*_ucsra, UDRE0))
_tx_udr_empty_irq();
} else {
// nop, the interrupt handler will free up space for us
}
}
_tx_buffer[_tx_buffer_head] = c;
// make atomic to prevent execution of ISR between setting the
// head pointer and setting the interrupt flag resulting in buffer
// retransmission
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
_tx_buffer_head = i;
sbi(*_ucsrb, UDRIE0);
}
return 1;
}
#endif // whole file